자바를 시작하기에 앞서 자바의 메모리의 구조에 대해서 알아야한다.
자바의 메모리 구조를 통해서 자바만이 가지고 있는 identity(아이덴티티)에 대해서 알아본다면
자바를 탄탄하게 시작 할 수 있을 것이라 생각한다.
1. 자바 버츄얼 머신(Java Virtual Machine, JVM)이란 무엇이며, 그 특징이 무엇인지에 대해서 알아본다.
JVM하면 떠오르는 것은 플랫폼 종속적이지 않은 자바의 특징을 보여주는 것...정도로만 알고 있었다.
JVM은 자바로 만들어진 모든 프로그램(일반 어플리케이션, Web Application Server(WAS) 등)을 실행하는 역할을 한다. 구별하지 않고 모든 자바 프로그램들은 JVM을 거쳐야 한다는 것이다.
JVM이 왜 자바의 핵심인지가 설명 할 수 있는 대목
JVM이 가지고 있는 특징은
1) 스택기반 가상머신이란?
대표적인 컴퓨터 아키텍처인 인텔 x86 아키텍처나 ARM 아키텍처와 같은 하드웨어가 레지스터 기반으로 동작하는 데 비해 JVM은 스택 기반으로 동작한다.
2) 심볼릭 레퍼런스
기본 자료형(primitive data type)을 제외한 모든 타입(클래스와 인터페이스)을 명시적인 메모리 주소 기반의 레퍼런스가 아니라 심볼릭 레퍼런스를 통해 참조한다.
3) 가비지 컬렉션(Garbage Collection)
클래스 인스턴스는 사용자 코드에 의해 명시적으로 생성되고 가비지 컬렉션에 의해 자동으로 파괴된다.
4) 기본 자료형을 명확하게 정의하여 플랫폼 독립성 보장
C/C++ 등의 전통적인 언어는 플랫폼에 따라 int 형의 크기가 변한다. JVM은 기본 자료형을 명확하게 정의하여 호환성을 유지하고 플랫폼 독립성을 보장한다.
5) 네트워크 바이트 오더(Network Byte Order)
자바 클래스 파일은 네트워크 바이트 오더를 사용한다. 인텔 x86 아키텍처가 사용하는 리틀 엔디안이나, RISC 계열 아키텍처가 주로 사용하는 빅 엔디안 사이에서 플랫폼 독립성을 유지하려면 고정된 바이트 오더를 유지해야 하므로 네트워크 전송 시에 사용하는 바이트 오더인 네트워크 바이트 오더를 사용한다. 네트워크 바이트 오더는 빅 엔디안이다.
자바의 환경!
2. JVM에 의해 자바 메모리 구조가 어떻게 작동되는지에 대해서 알아야 한다.
JVM이 어떤식의 구조로 되어 있고, 이를 통해 Java GC가 어떻게 일어나는지에 대해서 이해할 수 있게 될 것이다.
[자바 프로그램]
Java에서 프로그램을 실행한다는 것은 Class 파일을 JVM으로 로딩하고 ByteCode를 해석(Interpret)하는 작업은 물론,
메모리 등의 리소스를 할당하고 관리하며 정보를 처리하는 일련의 작업들을 포괄한다.
이 때 JVM은 스레드 관리 및 Garbage Collection과 같은 메모리 재생 작업도 수행한다.
[JVM의 기본적인 수행과정]
1. Class Loader System을 통해 Class 파일들을 JVM으로 로딩한다.
2. 로딩된 Class 파일들을 Execution Engine을 통해 해석한다.
3. 해석된 프로그램은 Runtime Data Areas에 배치되어 실질적인 수행이 이루어지게 된다. 이러한 실행 과정 속에서 JVM 은 필요에 따라 Thread Synchronization과 Garbage Collection(GC)와 같은 관리작업을 수행하게 된다.
클래스 로더(Class Loader)가 컴파일된 자바 바이트코드를 런타임 데이터 영역(Runtime Data Areas)에 로드하고, 실행 엔진(Execution Engine)이 자바 바이트코드를 실행한다.
클래스 로더
런타임 데이터 영역
런타임 데이터 영역은 JVM이라는 프로그램이 운영체제 위에서 실행되면서 할당받는 메모리 영역이다. 런타임 데이터 영역은 6개의 영역으로 나눌 수 있다. 이중 PC 레지스터(PC Register), JVM 스택(JVM Stack), 네이티브 메서드 스택(Native Method Stack)은 스레드마다 하나씩 생성되며 힙(Heap), 메서드 영역(Method Area), 런타임 상수 풀(Runtime Constant Pool)은 모든 스레드가 공유해서 사용한다.
- PC 레지스터: PC(Program Counter) 레지스터는 각 스레드마다 하나씩 존재하며 스레드가 시작될 때 생성된다. PC 레지스터는 현재 수행 중인 JVM 명령의 주소를 갖는다.
- JVM 스택: JVM 스택은 각 스레드마다 하나씩 존재하며 스레드가 시작될 때 생성된다. 스택 프레임(Stack Frame)이라는 구조체를 저장하는 스택으로, JVM은 오직 JVM 스택에 스택 프레임을 추가하고(push) 제거하는(pop) 동작만 수행한다. 예외 발생 시 printStackTrace() 등의 메서드로 보여주는 Stack Trace의 각 라인은 하나의 스택 프레임을 표현한다.
- 스택 프레임: JVM 내에서 메서드가 수행될 때마다 하나의 스택 프레임이 생성되어 해당 스레드의 JVM 스택에 추가되고 메서드가 종료되면 스택 프레임이 제거된다. 각 스택 프레임은 지역 변수 배열(Local Variable Array), 피연산자 스택(Operand Stack), 현재 실행 중인 메서드가 속한 클래스의 런타임 상수 풀에 대한 레퍼런스를 갖는다. 지역 변수 배열, 피연산자 스택의 크기는 컴파일 시에 결정되기 때문에 스택 프레임의 크기도 메서드에 따라 크기가 고정된다.
- 지역 변수 배열: 0부터 시작하는 인덱스를 가진 배열이다. 0은 메서드가 속한 클래스 인스턴스의 this 레퍼런스이고, 1부터는 메서드에 전달된 파라미터들이 저장되며, 메서드 파라미터 이후에는 메서드의 지역 변수들이 저장된다.
피연산자 스택: 메서드의 실제 작업 공간이다. 각 메서드는 피연산자 스택과 지역 변수 배열 사이에서 데이터를 교환하고, 다른 메서드 호출 결과를 추가하거나(push) 꺼낸다(pop). 피연산자 스택 공간이 얼마나 필요한지는 컴파일할 때 결정할 수 있으므로, 피연산자 스택의 크기도 컴파일 시에 결정된다.
네이티브 메서드 스택: 자바 외의 언어로 작성된 네이티브 코드를 위한 스택이다. 즉, JNI(Java Native Interface)를 통해 호출하는 C/C++ 등의 코드를 수행하기 위한 스택으로, 언어에 맞게 C 스택이나 C++ 스택이 생성된다.
- 메서드 영역: 메서드 영역은 모든 스레드가 공유하는 영역으로 JVM이 시작될 때 생성된다. JVM이 읽어 들인 각각의 클래스와 인터페이스에 대한 런타임 상수 풀, 필드와 메서드 정보, Static 변수, 메서드의 바이트코드 등을 보관한다. 메서드 영역은 JVM 벤더마다 다양한 형태로 구현할 수 있으며, 오라클 핫스팟 JVM(HotSpot JVM)에서는 흔히 Permanent Area, 혹은 Permanent Generation(PermGen)이라고 불린다. 메서드 영역에 대한 가비지 컬렉션은 JVM 벤더의 선택 사항이다.
- 런타임 상수 풀: 클래스 파일 포맷에서 constant_pool 테이블에 해당하는 영역이다. 메서드 영역에 포함되는 영역이긴 하지만, JVM 동작에서 가장 핵심적인 역할을 수행하는 곳이기 때문에 JVM 명세에서도 따로 중요하게 기술한다. 각 클래스와 인터페이스의 상수뿐만 아니라, 메서드와 필드에 대한 모든 레퍼런스까지 담고 있는 테이블이다. 즉, 어떤 메서드나 필드를 참조할 때 JVM은 런타임 상수 풀을 통해 해당 메서드나 필드의 실제 메모리상 주소를 찾아서 참조한다.
- 힙: 인스턴스 또는 객체를 저장하는 공간으로 가비지 컬렉션 대상이다. JVM 성능 등의 이슈에서 가장 많이 언급되는 공간이다. 힙 구성 방식이나 가비지 컬렉션 방법 등은 JVM 벤더의 재량이다.
실행 엔진
클래스 로더를 통해 JVM 내의 런타임 데이터 영역에 배치된 바이트코드는 실행 엔진에 의해 실행된다. 실행 엔진은 자바 바이트코드를 명령어 단위로 읽어서 실행한다. CPU가 기계 명령어을 하나씩 실행하는 것과 비슷하다. 바이트코드의 각 명령어는 1바이트짜리 OpCode와 추가 피연산자로 이루어져 있으며, 실행 엔진은 하나의 OpCode를 가져와서 피연산자와 함께 작업을 수행한 다음, 다음 OpCode를 수행하는 식으로 동작한다.
그런데 자바 바이트코드는 기계가 바로 수행할 수 있는 언어보다는 비교적 인간이 보기 편한 형태로 기술된 것이다. 그래서 실행 엔진은 이와 같은 바이트코드를 실제로 JVM 내부에서 기계가 실행할 수 있는 형태로 변경하며, 그 방식은 다음 두 가지가 있다.
- 인터프리터: 바이트코드 명령어를 하나씩 읽어서 해석하고 실행한다. 하나씩 해석하고 실행하기 때문에 바이트코드 하나하나의 해석은 빠른 대신 인터프리팅 결과의 실행은 느리다는 단점을 가지고 있다. 흔히 얘기하는 인터프리터 언어의 단점을 그대로 가지는 것이다. 즉, 바이트코드라는 '언어'는 기본적으로 인터프리터 방식으로 동작한다.
- JIT(Just-In-Time) 컴파일러: 인터프리터의 단점을 보완하기 위해 도입된 것이 JIT 컴파일러이다. 인터프리터 방식으로 실행하다가 적절한 시점에 바이트코드 전체를 컴파일하여 네이티브 코드로 변경하고, 이후에는 해당 메서드를 더 이상 인터프리팅하지 않고 네이티브 코드로 직접 실행하는 방식이다. 네이티브 코드를 실행하는 것이 하나씩 인터프리팅하는 것보다 빠르고, 네이티브 코드는 캐시에 보관하기 때문에 한 번 컴파일된 코드는 계속 빠르게 수행되게 된다.
JIT 컴파일러가 컴파일하는 과정은 바이트코드를 하나씩 인터프리팅하는 것보다 훨씬 오래 걸리므로, 만약 한 번만 실행되는 코드라면 컴파일하지 않고 인터프리팅하는 것이 훨씬 유리하다. 따라서, JIT 컴파일러를 사용하는 JVM들은 내부적으로 해당 메서드가 얼마나 자주 수행되는지 체크하고, 일정 정도를 넘을 때에만 컴파일을 수행한다.
자바가 느리다고 하는 이유?
'JAVA' 카테고리의 다른 글
자바가 확장한 객체지향 (0) | 2015.06.30 |
---|---|
자바와 객체지향 (0) | 2015.06.30 |
자바 스레드의 이해 (0) | 2015.06.30 |
자바 메모리 구조 >>> 2 (0) | 2015.06.30 |
GC - Garbage Collection 이란? (0) | 2015.06.30 |